

ISOGA

ISOGA: Integrated Services Optical Grid Architecture for Emerging Scientific Collaborative Applications

Oliver Yu
Electronic Visualization Laboratory
University of Illinois at Chicago

Motivation

- Current Deployment
 - Support multi-Gigabit rate & latency-sensitive scientific applications
 - Interconnect shared computing Grid clusters
 - TeraGrid, OptIPuter
 - Optical GigaPoP / Peering Exchange
 - StarLight (Chicago), NetherLight (Amsterdam)
 - Homogeneous single-domain optical-switched LAN, MAN, WAN
 - All-optical Switched: UIC all-optical LAN, OMNInet MAN
 - OEO Switched: DOE Ultra-Science Net, Canarie CAnet*4
- Emerging Requirements from Collaborative Scientific Application Users
 - User-centric dynamic lightpath provisioning
 - Multiple QoS support for multimedia transport services
 - Deploy applications over heterogeneous multi-domain optical-switched networks
 - Interconnect optical subnets to backbone network and peering exchanges
 - Mixed all-optical and OEO switching

Interconnected Optical-Switched Networks

Project Objectives

- Intelligent Control Plane Services over Optical-Switched Network
 - Enable user-centric or application-centric dynamic lightpath provisioning
 - On-demand setup and advanced scheduling of lightpaths
 - Dynamic lightpath restoration or self-healing
 - Enable multi-domain lightpath provisioning
 - Interoperate heterogeneous networks.
- Advanced Transport Services over Optical-Switched Network
 - Enable multiple transport services
 - Gigabit-rate stream traffic (single lambda per application).
 - Sub-gigabit-rate stream traffic (sub-lambda per application).
 - Terabit-rate stream traffic (multiple lambdas per application).
 - Variable Burst traffic
 - Multicast stream traffic
 - Enable optical network-aware middleware and transport Protocols

Integrated Services Optical Grid Architecture (ISOGA)

- Intelligent Control Plane Services
 - Dynamic User-centric Signaling Optical Negotiator (DUSON)
 - Extend IETF GMPLS control plane.
 - Enable users or applications with optical network awareness to control dynamic lightpath provisioning.
 - Photonic Interdomain Negotiator (PIN)
 - Interoperate optical-switched networks with incompatible control planes.
 - Enable multi-domain dynamic lightpath provisioning.
- Advanced Transport Services
 - Integrated Services Optical Network (ISON)
 - Extends an optical-switched network with multiple transport services to satisfy the diverse bandwidth and communication requirements of emerging scientific applications.

ISOGA Components

Dynamic User-centric Signaling Optical Negotiator (DUSON)

- Intelligent User & Application Signaling
 - Enable user (via control GUI) and application (via control API) to manipulate dynamic lightpath provisioning.
 - Support distributed proxy control agents for users/applications to engage in control plane services.
- Dynamic Efficient Fast Establishment & Restoration
 - Propose Robust Fast Optical Reservation Protocol (RFORP)
 - Minimize reservation failure and delay via localized rerouting and parallel reservation processing.
 - Enable virtual Protected Lightpaths
 - Optimize restoration resource allocation and delay
- Lightpath Advance Scheduler
 - Extend GARA-based DiffServ scheduler.

DUSON User and Application Signaling

Photonic Interdomain Negotiator (PIN)

- Interdomain Signaling and Routing Control
 - Domain-level Topology Discovery and Route Selection
 - Multi-domain Optical Resource Reservation
- Multi-domain Provisioning Gateway
 - Enable secure on-demand lightpath provisioning over multiple optical domains with heterogeneous switches and control services.
 - Interoperate optical-switched networks with service translation and mapping.
- User Authentication and Service Authorization
 - Enable domain-level policy-based control.
 - Employ IETF AAA (Authentication/Authorization/Accounting) servers & clients.
- Designed for compliancy with Open Grid Service Architecture (OGSA)
 - Enable transparent interoperability and integration among standardized components.

PIN Architecture

Integrated Services Optical Network (ISON)

- Optical Circuit Switching Service (single lambda per application)
 - Support constant gigabit-rate stream traffic.
 - Default optical network service.
- Emulate Sub-wavelength Switching Service (sub-lambda per application)
 - Support constant sub-gigabit-rate stream traffic.
 - Multiplexing of a single lambda with MPLS labeled logical circuits at edge.
- Emulate Waveband Switching Service (multi-lambda per application)
 - Support constant terabit/petabit rate stream traffic.
 - Inverse multiplexing of lightpaths at edge.
- Emulate Optical Burst Switching Service
 - Support variable bit rate burst traffic.
 - Burst aggregation at edge.
- Optical Multicast Switching Service
 - Support multicast stream traffic.
 - Enable multicast light-tree provisioning over all-optical multicast switch.

Integrated Services Optical Network (ISON)

Preliminary ISOGA Testbed

EVL Collaborative Applications over Optical Lambda Grid

GeoWall

• A geo-science tele-immersive graphics system for large remote sensing, volume rendering imagery, mapping and seismic interpretation.

LambdaVision

• It envisions situation-rooms and research labs in which all the walls are made from seamless ultra-high-resolution displays fed by data streamed over ultra-high-speed networks from remote visualization and storage servers, and high definition video.

LambdaRam

• Giant pool of clustered memory to provide lower latency access to large data sets than by swapping to disk.

Project Activities

Publication

- O. Yu, T. DeFanti, "Collaborative Lambda-Grid over All-Optical Metro Network with Intelligent Application Signaling," accepted for publication in *Proc. SC 2004*, November 2004.
- O. Yu, "Intercarrier Interdomain Control Plane for Global Optical Networks," in *Proc. IEEE ICC*, June 2004.

Workshop Presentation

- Presented "Lambda Grid Control Plane" at the Grid ON*Vector Workshop, San Diego, March 2004.
- Presented "Photonic Interdomain Negotiator" at the MCNC Workshop on Optical Control Planes for the Grid Community, Chicago, April 2004.

Demonstration

• Through collaboration with University of Amsterdam, on-demand lightpath provisioning was demonstrated over lambda Grid between Chicago & Amsterdam.

• Plan to demonstrate AAA-based multi-domain dynamic lightpath provisioning in SC 2004.